
Lost Frames and How Much Data to Buffer Inside the

Camera?
Lost Frames and How Much Data to Buffer Inside the Camera?

Reasons

1. Bandwidth limit

2. Latency

3. Reliability margin

Hardware

1. Communication link

2. Other devices

3. Firmware

Software

1. Interfaces

2. Applications

Buffer handling

1. Allocation

2. API

Summary

There is a common belief that a bigger memory buffer located inside the camera and capable of

storing several image frames ensures that application will never lose frames.

This application note elaborates on the subject of lost frames, its reasons and remedy.

We will address this question from the perspective of relevant camera interface, namely

CameraLink, FireWire, USB, GigE, CoaXPress, PCI Express and Thunderbolt.

https://www.ximea.com/support/wiki/usb3/Buffer_-_lost_frames#Lost-Frames-and-How-Much-Data-to-Buffer-Inside-the-Camera
https://www.ximea.com/support/wiki/usb3/Buffer_-_lost_frames#Reasons
https://www.ximea.com/support/wiki/usb3/Buffer_-_lost_frames#1-Bandwidth-limit
https://www.ximea.com/support/wiki/usb3/Buffer_-_lost_frames#2-Latency
https://www.ximea.com/support/wiki/usb3/Buffer_-_lost_frames#3-Reliability-margin
https://www.ximea.com/support/wiki/usb3/Buffer_-_lost_frames#Hardware
https://www.ximea.com/support/wiki/usb3/Buffer_-_lost_frames#1-Communication-link
https://www.ximea.com/support/wiki/usb3/Buffer_-_lost_frames#2-Other-devices
https://www.ximea.com/support/wiki/usb3/Buffer_-_lost_frames#3-Firmware
https://www.ximea.com/support/wiki/usb3/Buffer_-_lost_frames#Software
https://www.ximea.com/support/wiki/usb3/Buffer_-_lost_frames#1-Interfaces
https://www.ximea.com/support/wiki/usb3/Buffer_-_lost_frames#2-Applications
https://www.ximea.com/support/wiki/usb3/Buffer_-_lost_frames#Buffer-handling
https://www.ximea.com/support/wiki/usb3/Buffer_-_lost_frames#1-Allocation
https://www.ximea.com/support/wiki/usb3/Buffer_-_lost_frames#2-API
https://www.ximea.com/support/wiki/usb3/Buffer_-_lost_frames#Summary
https://www.ximea.com/support/attachments/1279/MQ_xiApi_Buffering_Diagram.png


Reasons
What are the reasons for the lost frames? It is all about bandwidth, latencies and buffer handling.

Bandwidth and latencies are mutually dependent, but always have one or more underlying root

causes. These can be divided into hardware and software related.

On the bandwidth and hardware side:

1. Bandwidth limit
If the available to the camera bandwidth on the interface is lower than the amount of data to be

delivered, such setup will always lose frames.

2. Latency
If available bandwidth is equal to the required, such system again will lose frames since it cannot

tolerate any latency in servicing request from the hardware interface.

3. Reliability margin
If available bandwidth has a margin above the required one, such system can reliably work without

lost frames. The question how big shall be this margin and whether it is related to the camera buffer

size will be addressed below.

Hardware
The bandwidth is provided by the PC host side and utilized by the camera. Bandwidth can be

limited by the following hardware reasons:

1. Communication link

Loss of transport packets* because of the high error rate or unreliable communication link.

This problem must be addressed by troubleshooting the reason for the loss of transport packets.

Connectionless protocols like UDP used by GigE cameras require application level to track whether

all packets have arrived and request resending of a packet, or a whole frame, if a packet did not

arrive within certain time.

For transaction based protocols, like USB bulk transfer, packet cannot be lost. There is 100%

reliable protocol of packet delivery by design of the USB 3.0 interface.

This protocol is implemented at the USB 3.0 transaction layer. If delivery of a packed failed after

several retries, then both host and camera are aware about that failure and may attempt to resend

this packet, and/or report an error to the API.

Reasons for not delivered packet can be signal integrity of SuperSpeed signals, firmware issues,

EM immunity, hardware design robustness like board layout, proper power rails decoupling, high

speed signal impedance, etc.

These aspects are valid both for the camera and host sides, and last but by far not least is the

cable. Cable performance significantly influences reliability of the communication by attenuating high

speed signals and delivering sufficient power to the camera.

2. Other devices
There are other devices sitting on the same bus and thus competing for the bandwidth and other

shared resources. This can be resolved by placing each camera on individual xHCI controller.

3. Firmware
Camera firmware is not capable of streaming data at the maximum speed supported by the host,

and thus reduces bandwidth by introducing latencies in committing transport packets.

PC hardware by itself is not imposing latencies.



Software
Software contributes to latencies to handle request of supplying empty buffers to receive new

camera data. These latencies in the PC software (like USB protocol stack and camera drivers, the

buffer handling routines at API level, etc.) are effectively reducing the available bandwidth on one

side.

1. Interfaces

Latency of servicing interrupts from hardware interface cards.

Camera interfaces, like FireWire, USB, GigE, are using respective host adapters. These adapters

have different requirements for maximum latency to service interrupts, from which the most

important and time critical is request to get descriptors for delivery of new data. The latency

depends from the performance of the computer, operating system, software drivers, protocols and

software stacks.

Camera interfaces like PCI Express or Thunderbolt are not using intermediate buffers or bus

protocols. These two interfaces have substantially lesser software components and by design have

much shorter latencies.

2. Applications
Application latencies – if application is in the loop of processing data from each frame and cannot

complete this task within required timeslot. This can happen if algorithm for processing is not time

deterministic by design. Another reason can be that underlying operating system cannot provide

required amount of CPU resources within processing timeslot.

Buffer handling
At the end of the day the software aspect converges to the buffer handling method. There are two

typical implementations of buffer handling:

1. Allocation
Application allocates image buffers in computer memory, commits these buffers to camera queue,

and waits when a buffer will get out of the queue with image data. Then application must process

data and again commit “empty” buffer. The problem happens if application is “slow” and cannot

process all incoming frames in time.

If application needs to acquire and process data in bursts, then application allocates as many

buffers as needed for 2 (or more) consecutive bursts and commits all of them to a camera. This will

ensure that all data are delivered and application has spare time between bursts to complete

processing, and then commit again all processed buffers.

2. API

Camera API allocates a circular queue of buffers sequentially filling it with image data coming from a

camera. When application wants to get new image data, it is either put on hold until first buffer is

filled with image data, or returns immediately if there is already a buffer with image data. API keeps

track of which image was last delivered to the application and which image is currently filling with

image data. API detects “overrun” situation when application is too slow and whole circular queue is

already filled with data.



Summary
So, to wrap-up all previous considerations:

1. For connection less protocols (UDP in GigE) it is vital to have large image buffer inside the

camera to be able to resend the packet or frame if it is lost.

2. For protocols which ensure packet resending on transaction layer like USB 3.0, large image

buffer inside the camera is not providing any benefit. What is required is a FIFO to tolerate jitter

on bus availability.

3. To build a reliable high speed application both bandwidth and latencies must be analyzed and

troubleshoot.

If they are not, then sooner or later camera will lose frames, regardless whether it has or has

not a large image buffer inside.

Buffer handling method also must be aligned with the application requirements.

XIMEA API, drivers and camera firmware are tuned to utilize all bandwidth from supported host

controllers and have lowest possible latencies.


